首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486286篇
  免费   49446篇
  国内免费   228篇
  2018年   4346篇
  2016年   5799篇
  2015年   8069篇
  2014年   9459篇
  2013年   13944篇
  2012年   15500篇
  2011年   16119篇
  2010年   10870篇
  2009年   9967篇
  2008年   14378篇
  2007年   15157篇
  2006年   14340篇
  2005年   13767篇
  2004年   13997篇
  2003年   13382篇
  2002年   13148篇
  2001年   18121篇
  2000年   17925篇
  1999年   14707篇
  1998年   5806篇
  1997年   5809篇
  1996年   5497篇
  1995年   5414篇
  1994年   5301篇
  1993年   5255篇
  1992年   12819篇
  1991年   12605篇
  1990年   12608篇
  1989年   12387篇
  1988年   11638篇
  1987年   10954篇
  1986年   10229篇
  1985年   10773篇
  1984年   9118篇
  1983年   7839篇
  1982年   6294篇
  1981年   5731篇
  1980年   5340篇
  1979年   8536篇
  1978年   6802篇
  1977年   6412篇
  1976年   6144篇
  1975年   6494篇
  1974年   7141篇
  1973年   6973篇
  1972年   6375篇
  1971年   5772篇
  1970年   5030篇
  1969年   5029篇
  1968年   4652篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
2.
3.
4.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
5.
6.
7.
8.
New scientific frontiers and emerging technologies within the life sciences pose many global challenges to society. Big Data is a premier example, especially with respect to individual, national, and international security. Here a Special Agent of the Federal Bureau of Investigation discusses the security implications of Big Data and the need for security in the life sciences.  相似文献   
9.
Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号